ECTS - Open Channel Hydraulics
Open Channel Hydraulics (CE570) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Open Channel Hydraulics | CE570 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | To develop an understanding of the hydraulics of open channel flow by using Conservation of Momentum, Energy and Mass principles and make necessary design of open channels and learn basic principles for sediment transport in open channels |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Uniform flow, gradually varied flow, rapidly varied flow, and sediment transport in open channels. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction : Basic Concepts of Fluid Flow | Chapter 1 |
2 | Open channel Flow: Energy Principle in Open Channel Flow | Chapter 2 |
3 | Open Channel Flow: Momentum Principle in Open Channel Flow | Chapter 3 |
4 | Open Channel Flow: Flow Resistance | Chapter 4 |
5 | Open Channel Flow: Flow Resistance | Chapter 4 |
6 | Open Channel Flow : Flow Resistance- Nonuniform Flow Computations in Uniform Channels | Chapter 5 |
7 | Open Channel Flow : Flow Resistance- Nonuniform Flow Computations in Uniform Channels | Chapter 5 |
8 | Open Channel Flow : Flow Resistance- Nonuniform Flow Computations in Irregular Channels | Chapter 5 |
9 | Open Channel Flow : Flow Resistance- Nonuniform Flow Computations in Irregular Channels | Chapter 5 |
10 | Open Channel Flow : Channel Controls, Channel Transitions, | Chapter 6 |
11 | Open Channel Flow : Channel Controls, Channel Transitions, | Chapter 6 |
12 | Open Channel Flow : Unsteady Flow | Chapter 7 |
13 | Open Channel Flow : Nonunifrom Flow | Chapter 8 |
14 | Open Channel Flow : Sediment Transport in open Channels | Chapter 10 |
15 | Final Exam Period | |
16 | Final Exam Period |
Sources
Course Book | 1. Open Channel Flow, Henderson, F.M., Mac Millan Publishing Co., New York, 1966 |
---|---|
Other Sources | 2. Lecture Notes, CE 372 Hydromechanics , METU Civil Engineering Department, 2012 |
3. Fluid Mechanics, Streeter, V.L., E. Benjamin Wylie, McGraw-Hills Inc, New York, 1978 | |
4. Open Channel Hydraulics, Chow V.T., McGraw-Hills Inc.,-Kogakusha Co., Tokyo, 1959 | |
5. Open Channel Flow, French R.H., McGraw-Hills Inc., Singapore, 1987 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 10 |
Presentation | - | - |
Project | 2 | 10 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 40 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Having accumulated knowledge on mathematics, science and engineering and an ability to apply these knowledge to solve Civil engineering problems. | |||||
2 | Ability to design Cİvil Engineering systems fulfilling sustainability in environment and manufacturability and economic constraints | |||||
3 | An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems. | X | ||||
4 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | |||||
5 | Ability to use modern engineering tools, techniques and facilities in design and other engineering applications | |||||
6 | Ability to carry out independent research in the field and to report the results of the research effectively and be able to present the research results at scientific meetings. | |||||
7 | Sufficient oral and written English knowledge to follow scientific conferences in the field and communicate with colleagues. | |||||
8 | Ability to effectively use knowledge in the field to work in disciplinary/multidisciplinary teams and the skill to lead these teams | |||||
9 | Consciousness on the necessity of improvement and sustainability as a result of life-long learning,ability for continuous renovation and monitoring the developments on science and technology and awareness on entrepreneurship and innovation | X | ||||
10 | Professional and ethical responsibility to gather and interpret data, apply and announce solutions to Civil Engineering problems. | |||||
11 | An ability to investigate, improve social connections and their conducting norms with a critical view and act to change them when necessary. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 2 | 10 | 20 |
Report | |||
Homework Assignments | 4 | 4 | 16 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 5 | 5 |
Prepration of Final Exams/Final Jury | 1 | 8 | 8 |
Total Workload | 125 |