ECTS - Fuel Cell Technologies
Fuel Cell Technologies (ENE412) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Fuel Cell Technologies | ENE412 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(ENE203 veya CEAC203) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Project Design/Management. |
Course Lecturer(s) |
|
Course Objectives | The course aims to provide deeper knowledge, a wider scope and improved understanding of theory, analysis, performance, design and the operational principles of various fuel cell components, systems, fuel processing and hydrogen infrastructure. To understand the current state of technology of stationary, automotive and portable fuel cell systems and components, and the challenges the industry faces today. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction: fuel cell operating principles,history,types,components and systems;fuel cell thermodynamics and electrochemistry:Nernst equation,Tafel equation,cell voltage,fuel cell efficiency and losses for operational fuel cell voltages;proton exchange membrane fuel cells:components and system, construction and performance, critical issues and recent developments;fuel cell stack design and calculations; hydrogen production, storage, safety and infrastructure; balance of fuel cell power plant |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Fuel Cell Technologies | |
2 | Fuel Cell Basic Chemistry and Thermodynamics | |
3 | Fuel Cell Basic Chemistry and Thermodynamics | |
4 | Fuel Cell Electrochemistry | |
5 | Fuel Cell Practice Studies | |
6 | Main PEM Fuel Cell Components and Materials Properties | |
7 | Midterm Exam | |
8 | PEM Fuel Cell Stack design | |
9 | PEM Fuel Cell Stack design | |
10 | Fuel Cell System Design | |
11 | Overview of Fuel Cell Types | Chapter 8 |
12 | Fuel Cell and Hydrogen Economy | |
13 | Term Project | |
14 | Term Project | |
15 | Term Project | |
16 | Final Exam |
Sources
Course Book | 1. PEM Fuel Cells: Theory and Practice, Frano Barbir, Elsevier Academic Press |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 25 |
Presentation | - | - |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 9 | 140 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to access, analyze and evaluate the knowledge needed for the solution of advanced chemical engineering and applied chemistry problems. | X | ||||
2 | An ability to self-renewal by following scientific and technological developments within the philosophy of lifelong learning. | X | ||||
3 | An understanding of social, environmental, and the global impacts of the practices and innovations brought by chemistry and chemical engineering. | X | ||||
4 | An ability to perform original research and development activities and to convert the achieved results to publications, patents and technology. | |||||
5 | An ability to apply advanced mathematics, science and engineering knowledge to advanced engineering problems. | X | ||||
6 | An ability to design and conduct scientific and technological experiments in lab- and pilot-scale, and to analyze and interpret their results. | |||||
7 | Skills in design of a system, part of a system or a process with desired properties and to implement industry. | |||||
8 | Ability to perform independent research. | X | ||||
9 | Ability to work in a multi-disciplinary environment and to work as a part of a team. | X | ||||
10 | An understanding of the professional and occupational responsibilities. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 3 | 3 | 9 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 130 |